arcsin (x) + arcsin(y) = arcsin (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\))

We will learn how to prove the property of the inverse trigonometric function arcsin (x) + arcsin(y) = arcsin (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\))

Proof:  

Let, sin\(^{-1}\) x = α and sin\(^{-1}\) y = β

From sin\(^{-1}\) x = α we get,

x = sin α

and from sin\(^{-1}\) y = β we get,

y = sin β

Now, sin (α + β) = sin α cos β + cos α sin β

sin (α + β) = sin α \(\sqrt{1 - sin^{2} β}\) + \(\sqrt{1 - sin^{2} α}\) sin β

sin (α + β) = x ∙ \(\sqrt{1 - y^{2}}\) + \(\sqrt{1 - x^{2}}\) ∙ y

Therefore, α + β = sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\)) 

or, sin\(^{-1}\) x + sin\(^{-1}\) y = sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\)).       Proved.


Note: If x > 0, y > 0 and x\(^{2}\) + y\(^{2}\) > 1, then the sin\(^{-1}\) x + sin\(^{-1}\) y may be an angle more than π/2 while sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\)), is an angle between – π/2 and π/2.

Therefore, sin\(^{-1}\) x + sin\(^{-1}\) y = π - sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\))



1. Prove that sin\(^{-1}\) \(\frac{3}{5}\) + sin\(^{-1}\) \(\frac{8}{17}\) = sin\(^{-1}\) \(\frac{77}{85}\)

Solution:

L. H. S. = sin\(^{-1}\) \(\frac{3}{5}\) + sin\(^{-1}\) \(\frac{8}{17}\)

Now, we will apply the formula sin\(^{-1}\) x + sin\(^{-1}\) y = sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\))

= sin\(^{-1}\) (\(\frac{3}{5}\) \(\sqrt{1 - (\frac{8}{17})^{2}}\) + \(\frac{8}{17}\)\(\sqrt{1 - (\frac{3}{5})^{2}}\))

= sin\(^{-1}\) (\(\frac{3}{5}\) ×  \(\frac{15}{17}\) + \(\frac{8}{17}\) ×  \(\frac{4}{5}\))

= sin\(^{-1}\)  \(\frac{77}{85}\) = R. H. S.                  Proved.


2. Show that, sin\(^{-1}\) \(\frac{4}{5}\) + sin\(^{-1}\) \(\frac{5}{13}\) + sin\(^{-1}\) \(\frac{16}{65}\) = \(\frac{π}{2}\).  

Solution:     

L. H. S. = (sin\(^{-1}\)\(\frac{4}{5}\) + sin\(^{-1}\)\(\frac{5}{13}\)) + sin\(^{-1}\)\(\frac{16}{65}\)

Now, we will apply the formula sin\(^{-1}\) x + sin\(^{-1}\) y = sin\(^{-1}\) (x\(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\))

= sin\(^{-1}\) (\(\frac{4}{5}\) \(\sqrt{1 - (\frac{5}{13})^{2}}\) + \(\frac{5}{13}\)\(\sqrt{1 - (\frac{4}{5})^{2}}\) + sin\(^{-1}\)\(\frac{16}{65}\)

= sin\(^{-1}\) (\(\frac{4}{5}\) ×  \(\frac{12}{13}\) + \(\frac{5}{13}\) ×  \(\frac{3}{5}\)) + sin\(^{-1}\)\(\frac{16}{65}\)

= sin\(^{-1}\) \(\frac{63}{65}\) + sin\(^{-1}\)\(\frac{16}{65}\)

= sin\(^{-1}\) \(\frac{63}{65}\) + cos\(^{-1}\)\(\frac{63}{65}\), [Since, sin\(^{-1}\) \(\frac{16}{65}\) = cos\(^{-1}\) \(\frac{63}{65}\)]

= \(\frac{π}{2}\), [Since, sin\(^{-1}\) x + cos\(^{-1}\) x = \(\frac{π}{2}\)] = R. H. S.            Proved.


Note: sin\(^{-1}\) = arcsin (x)

 Inverse Trigonometric Functions






11 and 12 Grade Math

From arcsin(x) + arcsin(y) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More