Angle Side Angle Congruence

Conditions for the ASA - Angle Side Angle congruence

Two triangles are said to be congruent if two angles and the included side of the one are respectively equal to the two angles and the included side of the other.

Experiment to prove Congruence with ASA:

Draw a ∆LMN with M = 60°, MN = 5 cm, N = 30°.

Angle Side Angle Congruence

Also, draw another ∆XYZ with Y = 60°, YZ = 5cm, Z = 30°.

We see that M = Y, MN = YZ and N = Z.

Make a trace copy of ∆XYZ and try to make it cover ∆LMN with X on L, Y on M and Z on N.

We observe that: two triangles cover each other exactly.

Therefore ∆LMN ∆XYZ


Worked-out problems on angle side angle congruence triangles (ASA postulate):

1. ∆PQR ∆XYZ by ASA congruence condition. Find the value of x and y.

Problems on Angle Side Angle Congruence

Solution:

WE know ∆ PQR ∆XYZ by ASA congruence.

Therefore Q = ∠Y i.e., x + 15 = 80° and R = Z i.e., 5y + 10 = 30°.

Also, QR = YZ.

Since, x + 15 = 80°

Therefore x = 80 – 15 = 65°

Also, 5y + 10 = 30°

So, 5y = 30 – 10

Therefore, 5y = 20

⇒ y = 20/5

⇒ y = 4°

Therefore, the value of x and y are 65° and 4°.


2. Prove that the diagonals of a parallelogram bisect each other.

ASA Congruence

In a parallelogram JKLM, diagonal JL and KM intersect at O

It is required to prove that JO = OL and KO = OM

Proof: In ∆JOM and ∆KOL

∠OJM = ∠OLK [since, JM ∥ KL and JL is the transversal]

 JM = KL [opposite sides of a parallelogram]

∠OMJ = ∠OKL [since, JM ∥ KL and KM is the transversal]

Therefore, ∆JOM and ∆KOL [Angle-Side-Angel]

Therefore, JO = OL and KO = OM [Sides of congruent triangle]


3. ∆XYZ is an equilateral triangle such that XO bisects ∠X.

Also, ∠XYO = ∠XZO. Show that ∆YXO ≅ ∆ZXO

Angle Side Angle Postulate

Solution:

∆ XYZ is an equilateral                       

Therefore, XY = YZ = ZX

Given: XY bisects ∠X.            

Therefore, ∠YXO = ∠ZXO

Given: ∠XYO = ∠XZO           

Given: XY = XZ

Therefore, ∆YXO ≅ ∆ZXO by ASA congruence condition


4. The straight line drawn through the intersection of the two diagonals of a parallelogram divide it into two equal parts.

Solution:

Prove Congruence with ASA

O is the point of intersection of the two diagonals JL and KM of the parallelogram JKLM.

Straight line XOY meets JK and LM at the point X and Y respectively.

It is required to prove that quadrilateral JXYM equal to quadrilateral LYXK.


Proof: In ∆JXO and ∆LYO, JO = OL [diagonals of a parallelogram bisect each other]

∠OJX= alternate ∠OLY

∠JOX = ∠LOY

Therefore, ∆ JOX ≅ ∆ LOY [by angle side angle congruence]

Therefore, JX = LY

Therefore, KX = MY [since, JK = ML]

Now in quadrilaterals JXYM and LYXK, JX = LY; XY = YX, YM = XK and MJ = KL and ∠MJX = ∠KLY

Hence it is proved that in the two quadrilaterals the sides are equal to each other and the included angles of two equal sides are also equal.

Therefore, quadrilateral JXYM equal to quadrilateral XKLY.

Congruent Shapes

Congruent Line-segments

Congruent Angles

Congruent Triangles

Conditions for the Congruence of Triangles

Side Side Side Congruence

Side Angle Side Congruence

Angle Side Angle Congruence

Angle Angle Side Congruence

Right Angle Hypotenuse Side congruence

Pythagorean Theorem

Proof of Pythagorean Theorem

Converse of Pythagorean Theorem





7th Grade Math Problems

8th Grade Math Practice

From Angle Side Angle Congruence to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

Word problems on Pythagorean Theorem