Addition and Subtraction of Surds

In addition and subtraction of surds we will learn how to find the sum or difference of two or more surds only when they are in the simplest form of like surds.

For addition and subtraction of surds, we have to check the surds that if they are similar surds or dissimilar surds.

Follow the following steps to find the addition and subtraction of two or more surds:

Step I: Convert each surd in its simplest mixed form.

Step II: Then find the sum or difference of rational co-efficient of like surds.

Step III: Finally, to get the required sum or difference of like surds multiply the result obtained in step II by the surd-factor of like surds.

Step IV: The sum or difference of unlike surds is expressed in a number of terms by connecting them with positive sign (+) or negative (-) sign.

If the surds are similar, then we can sum or subtract rational coefficients to find out the result of addition or subtraction.

\(a\sqrt[n]{x}\pm b\sqrt[n]{x} = (a\pm b)\sqrt[n]{x}\)

The above equation shows the rule of addition and subtraction of surds where irrational factor is \(\sqrt[n]{x}\) and a, b are rational coefficients.

Surds firstly need to be expressed in their simplest form or lowest order with minimum radicand, and then only we can find out which surds are similar. If the surds are similar, we can add or subtract them according to the rule mentioned above.

For example we need to find the addition of \(\sqrt[2]{8}\), \(\sqrt[2]{18}\).

Both surds are in same order. Now we need find express them in their simplest form.

So \(\sqrt[2]{8}\) = \(\sqrt[2]{4\times 2}\) = \(\sqrt[2]{2^{2}\times 2}\) = \(2\sqrt[2]{2}\)

And \(\sqrt[2]{18}\) = \(\sqrt[2]{9\times 2}\) = \(\sqrt[2]{3^{2}\times 2}\) = \(3\sqrt[2]{2}\).

As both surds are similar, we can add their rational co-efficient and find the result. 

Now \(\sqrt[2]{8}\) + \(\sqrt[2]{18}\) = \(2\sqrt[2]{2}\) + \(3\sqrt[2]{2}\) = \(5\sqrt[2]{2}\).

Similarly we will find out subtraction of \(\sqrt[2]{75}\), \(\sqrt[2]{48}\).

\(\sqrt[2]{75}\)= \(\sqrt[2]{25\times 3}\)= \(\sqrt[2]{5^{2}\times 3}\)= \(5\sqrt[2]{3}\)

\(\sqrt[2]{48}\) = \(\sqrt[2]{16\times 3}\) = \(\sqrt[2]{4^{2}\times 3}\)= \(4\sqrt[2]{3}\)

So \(\sqrt[2]{75}\) - \(\sqrt[2]{48}\) = \(5\sqrt[2]{3}\) - \(4\sqrt[2]{3}\) = \(\sqrt[2]{3}\).

But if we need to find out the addition or subtraction of \(3\sqrt[2]{2}\) and \(2\sqrt[2]{3}\), we can only write it as \(3\sqrt[2]{2}\) + \(2\sqrt[2]{3}\) or \(3\sqrt[2]{2}\) - \(2\sqrt[2]{3}\). As the surds are dissimilar, further addition and subtraction are not possible in surd forms.

Examples of Addition and Subtraction of Surds:

1. Find the sum of √12 and √27.

Solution:

Sum of √12 and √27

= √12 + √27

Step I: Express each surd in its simplest mixed form;

= \(\sqrt{2\cdot 2\cdot 3}\) + \(\sqrt{3\cdot 3\cdot 3}\)

= 2√3 + 3√3

Step II: Then find the sum of rational co-efficient of like surds.

= 5√3


2. Simplify \(3\sqrt[2]{32}\) + \(6\sqrt[2]{45}\) - \(\sqrt[2]{162}\) - \(2\sqrt[2]{245}\).

Solution:

\(3\sqrt[2]{32}\) + \(6\sqrt[2]{45}\) - \(\sqrt[2]{162}\) - \(2\sqrt[2]{245}\)

= \(3\sqrt[2]{16\times 2}\) + \(6\sqrt[2]{9\times 5}\) - \(\sqrt[2]{81\times 2}\) - \(2\sqrt[2]{49\times 5}\)

= \(3\sqrt[2]{4^{2}\times 2}\) + \(6\sqrt[2]{3^{2}\times 5}\) - \(\sqrt[2]{9^{2}\times 2}\) - \(2\sqrt[2]{7^{2}\times 5}\)

= \(12\sqrt[2]{2}\) + \(18\sqrt[2]{5}\) - \(9\sqrt[2]{2}\) - \(14\sqrt[2]{5}\)

= \(3\sqrt[2]{2}\) + \(4\sqrt[2]{5}\)


3. Subtract 2√45 from 4√20.

Solution:

Subtract 2√45 from 4√20

= 4√20 - 2√45

Now convert each surd in its simplest form

= 4\(\sqrt{2\cdot 2\cdot 5}\) - 2\(\sqrt{3\cdot 3\cdot 5}\)

= 8√5 - 6√5

Clearly, we see that 8√5 and 6√5 are like surds.

Now find the difference of rational co-efficient of like surds

= 2√5.


4. Simplify \(7\sqrt[3]{128}\) + \(5\sqrt[3]{375}\) - \(2\sqrt[3]{54}\) - \(2\sqrt[3]{1029}\).

Solution:

\(7\sqrt[3]{128}\) + \(5\sqrt[3]{375}\) - \(2\sqrt[3]{54}\) - \(2\sqrt[3]{1029}\)

= \(7\sqrt[3]{64\times 2}\) + \(5\sqrt[3]{125\times 3}\) - \(\sqrt[3]{27\times 2}\) - \(2\sqrt[3]{343\times 3}\)

= \(7\sqrt[3]{4^{3}\times 2}\) + \(5\sqrt[3]{5^{3}\times 3}\) - \(\sqrt[3]{3^{3}\times 2}\) - \(2\sqrt[3]{7^{3}\times 3}\)

= \(28\sqrt[3]{2}\) + \(25\sqrt[3]{3}\) - \(3\sqrt[3]{2}\) - \(14\sqrt[3]{3}\)

= \(25\sqrt[3]{2}\) + \(11\sqrt[3]{3}\).


5. Simplify: 5√8 - √2 + 5√50 - 2\(^{5/2}\)

Solution:

5√8 - √2 + 5√50 - 2\(^{5/2}\)

Now convert each surd in its simplest form

= 5\(\sqrt{2\cdot 2\cdot 2}\) - √2 + 5\(\sqrt{2\cdot 5\cdot 5}\) - \(\sqrt{2^{5}}\)

= 5\(\sqrt{2\cdot 2\cdot 2}\) - √2 + 5\(\sqrt{2\cdot 5\cdot 5}\) - \(\sqrt{2\cdot 2\cdot 2\cdot 2\cdot 2}\)

= 10√2 - √2 + 25√2 - 4√2

Clearly, we see that 8√5 and 6√5 are like surds.

Now find the sum and difference of rational co-efficient of like surds

= 30√2


6. Simplify \(24\sqrt[3]{3}\) + \(5\sqrt[3]{24}\) - \(2\sqrt[2]{28}\) - \(4\sqrt[2]{63}\).

Solution:

\(24\sqrt[3]{3}\) + \(5\sqrt[3]{24}\) - \(2\sqrt[2]{28}\) - \(4\sqrt[2]{63}\)

= \(24\sqrt[3]{3}\) + \(5\sqrt[3]{8\times 3}\) - \(2\sqrt[2]{4\times 7}\) - \(4\sqrt[2]{9\times 7}\)

=  \(24\sqrt[3]{3}\) + \(5\sqrt[3]{2^{3}\times 3}\) - \(2\sqrt[2]{2^{2}\times 7}\) - \(4\sqrt[2]{3^{2}\times 7}\)

= \(24\sqrt[3]{3}\) + \(10\sqrt[3]{3}\) - \(4\sqrt[2]{7}\) - \(12\sqrt[2]{7}\)

= \(34\sqrt[3]{3}\) - \(16\sqrt[2]{7}\).


7. Simplify: 2∛5 - ∛54 + 3∛16 - ∛625

Solution:

2∛5 - ∛54 + 3∛16 - ∛625

Now convert each surd in its simplest form

= 2∛5 - \(\sqrt[3]{2\cdot 3\cdot 3\cdot 3}\) + 3\(\sqrt[3]{2\cdot 2\cdot 2\cdot 2}\) - \(\sqrt[3]{5\cdot 5\cdot 5\cdot 5}\)

= 2∛5 - 3∛2 + 6∛2 - 5∛5

= (6∛2 - 3∛2) + (2∛5 - 5∛5), [Combining the like surds]

Now find the difference of rational co-efficient of like surds

= 3∛2 - 3∛5


8. Simplify \(5\sqrt[2]{7}\) + \(3\sqrt[2]{20}\) - \(2\sqrt[2]{80}\) - \(3\sqrt[2]{84}\).

Solution:

\(5\sqrt[2]{7}\) + \(3\sqrt[2]{20}\) - \(2\sqrt[2]{80}\) - \(3\sqrt[2]{84}\)

= \(5\sqrt[2]{7}\) + \(3\sqrt[2]{4\times 5}\) - \(2\sqrt[2]{16\times 5}\) - \(3\sqrt[2]{16\times 6}\)

= \(5\sqrt[2]{7}\) + \(3\sqrt[2]{2^{2}\times 5}\) - \(2\sqrt[2]{4^{2}\times 2}\) - \(3\sqrt[2]{4^{2}\times 6}\)

= \(5\sqrt[2]{7}\) + \(6\sqrt[2]{5}\) - \(8\sqrt[2]{5}\) - \(12\sqrt[2]{6}\)

= \(5\sqrt[2]{7}\) - \(2\sqrt[2]{5}\) - \(12\sqrt[2]{6}\).


Note:

√x + √y ≠ \(\sqrt{x + y}\) and

√x - √y ≠ \(\sqrt{x - y}\)

 Surds






11 and 12 Grade Math

From Addition and Subtraction of Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More