Trigonometric equations of the form a cos theta plus b sin theta equals c (i.e. a cos θ + b sin θ = c) where a, b, c are constants (a, b, c ∈ R) and |c| ≤ \(\sqrt{a^{2} + b^{2}}\).
To solve this type of questions, we first reduce them in the form cos θ = cos α or sin θ = sin α.
We use the following ways to solve the equations of the form a cos θ + b sin θ = c.
(i) First write the equation a cos θ + b sin θ = c.
(ii) Let a = r cos ∝ and b = r sin ∝ where, r > 0 and - \(\frac{π}{2}\) ≤ ∝ ≤ \(\frac{π}{2}\).
Now, a\(^{2}\) + b\(^{2}\) = r\(^{2}\) cos\(^{2}\) ∝ + r\(^{2}\) sin\(^{2}\) ∝ = r\(^{2}\) (cos\(^{2}\) ∝ + sin\(^{2}\) ∝) = r\(^{2}\)
or, r = \(\sqrt{a^{2} + b^{2}}\)
and tan ∝ = \(\frac{r sin ∝}{r cos ∝}\) = \(\frac{b}{a}\) i.e. ∝ = tan\(^{-1}\) (\(\frac{b}{a}\)).
(iii) Using the substitution in step (ii), the equation
reduce to r cos (θ - ∝) = c
⇒ cos (θ - ∝) = \(\frac{c}{r}\) = cos β
Now, putting the value of a and b in a cos θ + b sin θ = c we get,
r cos ∝ cos θ + r sin ∝ sin θ = c
⇒ r cos (θ - ∝) = c
⇒ cos (θ - ∝) = \(\frac{c}{r}\) = cos β (say)
(iv) Solve the equation obtained in step (iii) by using the formula of cos θ = cos ∝.
cos (θ - ∝) = cos β
Therefore, θ - ∝ = 2nπ ± β
⇒ θ = 2nπ ± β + ∝ where n ∈ Z
and cos β = \(\frac{c}{r}\) = \(\frac{c}{\sqrt{a^{2} + b^{2}}}\)
Note: If |c| > \(\sqrt{a^{2} + b^{2}}\), the given equation has no solution.
From the above discussion we observe that a cos θ + b sin θ = c can be solved when |cos β| ≤ 1
⇒ |\(\frac{c}{\sqrt{a^{2} + b^{2}}}\)| ≤ 1
⇒ |c| ≤ \(\sqrt{a^{2} + b^{2}}\)
1. Solve the trigonometric equation √3 cos θ + sin θ = √2.
Solution:
√3 cos θ + sin θ = √2
This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = √2.
Let a = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.
Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2
and tan ∝ = \(\frac{1}{√3}\) ⇒ ∝ = \(\frac{π}{6}\)
Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,
r cos ∝ cos θ + r sin ∝ sin θ = √2
⇒ r cos (θ - ∝) = √2
⇒ 2 cos (θ - \(\frac{π}{6}\)) = √2
⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{√2}{2}\)
⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{√2}\)
⇒ cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{4}\)
⇒ (θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{4}\), where n = 0, ± 1, ± 2,…………
⇒ θ = 2nπ ± \(\frac{π}{4}\) + \(\frac{π}{6}\), where n = 0, ± 1, ± 2,…………
⇒ θ = 2nπ + \(\frac{π}{4}\) + \(\frac{π}{6}\) or θ = 2nπ - \(\frac{π}{4}\) + \(\frac{π}{6}\), where n = 0, ± 1, ± 2,…………
⇒ θ = 2nπ + \(\frac{5π}{12}\) or θ = 2nπ - \(\frac{π}{12}\), where n = 0, ± 1, ± 2,…………
2. Solve √3 cos θ + sin θ = 1 (-2π < θ < 2π)
Solution:
√3 cos θ + sin θ = 1
This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = 1.
Let a = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.
Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2
and tan ∝ = \(\frac{1}{√3}\) ⇒ ∝ = \(\frac{π}{6}\)
Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,
r cos ∝ cos θ + r sin ∝ sin θ = 1
⇒ r cos (θ - ∝) = 1
⇒ 2 cos (θ - \(\frac{π}{6}\)) = 1
⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{2}\)
⇒ cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)
⇒ (θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{3}\), where n = 0, ± 1, ± 2, …………
⇒ θ = 2nπ ± \(\frac{π}{3}\) + \(\frac{π}{6}\), where n = 0, ± 1, ± 2, …………
⇒ Either, θ = 2nπ + \(\frac{π}{3}\) + \(\frac{π}{6}\) (4n + 1)\(\frac{π}{2}\) ………..(1) or, θ = 2nπ - \(\frac{π}{3}\) + \(\frac{π}{6}\) = 2nπ - \(\frac{π}{6}\) ………..(2) Where 0, ± 1, ± 2, …………
Now, putting n = 0 in equation (1) we get, θ = \(\frac{π}{2}\),
Putting n = 1 in equation (1) we get, θ = \(\frac{5π}{2}\),
Putting n = -1 in equation (1) we get, θ = - \(\frac{3π}{2}\),
and putting n = 0 in equation (2) we get, θ = - \(\frac{π}{6}\)
Putting n = 1 in equation (2) we get, θ = \(\frac{11π}{6}\)
Putting n = -1 in equation (2) we get, θ = - \(\frac{13π}{6}\)
Therefore,the required solution of the trigonometric equation √3 cos θ + sin θ = 1 in -2π < θ < 2π are θ = \(\frac{π}{2}\), - \(\frac{π}{6}\), - \(\frac{3π}{2}\), \(\frac{11π}{6}\).
11 and 12 Grade Math
From a cos θ + b sin θ = c to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.