Practice the questions given in the Worksheet on Factorization.
Problems on Factorization of expressions of the form a\(^{3}\) ± b\(^{3}\)
1. Factorize:
(i) 8x\(^{3}\) + 27y\(^{3}\)
(ii) 216a\(^{3}\) + 1
(iii) a\(^{6}\) + 1
(iv) x\(^{3}\) + \(\frac{1}{x^{3}}\)
(v) a\(^{3}\) + 8b\(^{6}\)
2. Factorize:
(i) 1 – 729m\(^{3}\)
(ii) 125x\(^{3}\) – 27y\(^{3}\)
(iii) a\(^{3}\) - \(\frac{8}{b^{3}}\)
(iv) x\(^{6}\) – y\(^{3}\)
3. Factorize:
(i) x\(^{6}\) - 1
(ii) a\(^{6}\) – 729b\(^{6}\)
4. Factorize a\(^{6}\) + b\(^{6}\) and prove that its value is zero if a\(^{4}\) + b\(^{4}\) = a\(^{2}\)b\(^{2}\).
On Factorization of expressions reducible to a\(^{3}\) ± b\(^{3}\)from
5. Factorize:
(i) x\(^{3}\) + 3x\(^{2}\) + 3x + 28
(ii) a\(^{3}\) + 3a\(^{2}\) + 3a - 7
(iii) x\(^{3}\) – 3x – 1 + \(\frac{3}{x}\) - \(\frac{1}{x^{3}}\)
[Hint: Given expression = x3 - 3x2 ∙ \(\frac{1}{x}\) ∙ \(\frac{1}{x^{2}}\) - \(\frac{1}{x^{3}}\) - 1 = (x - \(\frac{1}{x}\))3 - 13.]
(iv) a\(^{3}\) + 7b\(^{3}\) + 6ab(a + 2b)
[Hint: Given expression = a3 + (2b)3 + 3 ∙ a ∙ 2b(a + 2b) - b3 = (a + 2b)3 - b3.]
Factorization of expressions of the form a\(^{3}\) + b\(^{3}\) + c\(^{3}\) – 3abc
6. Factorize:
(i) 8 + x\(^{3}\) + y\(^{3}\) – 6xy
(ii) a\(^{3}\) + 8b\(^{3}\) + 27c\(^{3}\) – 18abc
Problems on Miscellaneous Factorization
7. Factorize:
(i) (1 – x)\(^{3}\) + (y – 1)\(^{3}\) + (x – y)\(^{3}\)
(ii) (2a – b – c)\(^{3}\) + (2b – c – a)\(^{3}\) + (2c – a – b)\(^{3}\)
8. Factorize:
(i) x\(^{9}\) + 1
(ii) a\(^{12}\) – b\(^{12}\)
(iii) (a + b)\(^{3}\) + 8(a – b)\(^{3}\)
(iv) a\(^{9}\) – b\(^{9}\)
9. Factorize:
(i) x\(^{3}\) + x\(^{2}\) - 2
[Hint: Given expression = x3 - 1 + x2 - 1 (x - 1)(x2 + x + 1) + (x - 1)(x + 1) = (x - 1)(x2 + x + 1 + x + 1) = (x - 1)(x2 + 2x + 2).]
(ii) a\(^{3}\) + a\(^{2}\) - \(\frac{1}{a^{2}}\) - \(\frac{1}{a^{3}}\)
[Hint: Given expression = a3 - \(\frac{1}{a^{3}}\) + a2 \(\frac{1}{a^{2}}\) = (a - \(\frac{1}{a}\))(a2 + 1 + \(\frac{1}{a^{2}}\)) + (a - \(\frac{1}{a}\))(a + \(\frac{1}{a}\))].
Application problems on Factorization
10. (i) If a + \(\frac{1}{a}\) = 2, find a\(^{3}\) + \(\frac{1}{a^{3}}\).
(ii) If x - \(\frac{1}{x}\) = √3, find x\(^{3}\) - \(\frac{1}{x^{3}}\).
(iii) If m + \(\frac{1}{m}\) = √3, find m\(^{6}\) - \(\frac{1}{m^{6}}\).
[Hint: Given expression = m3 + \(\frac{1}{m^{3}}\) = (m + \(\frac{1}{m}\))3 - 3m ∙ \(\frac{1}{m}\) ∙ (m + \(\frac{1}{m}\)) = (√3)3 - 3√3 = 0.
And m6 + \(\frac{1}{m^{6}}\) = (m3 + \(\frac{1}{m^{3}}\))(m3 - \(\frac{1}{m^{3}}\)) = 0.]
11. (i) If x + y + z = 6, xyz = 6 and xy + yz + zx = 11 then find x\(^{3}\) + y\(^{3}\) + z\(^{3}\).
[Hint: Use x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - yz - zx - xy) = (x + y + z){(x + y + z)2 - 3(yz + zx + xy)}.]
(ii) If l + m + n = 9, l\(^{2}\)+ m\(^{2}\) + n\(^{2}\) = 27 and l\(^{3}\) + m\(^{3}\) + n\(^{3}\) = 81 then find lmn.
[Hint: Use l3 + m3 + n3 - 3lmn = (l + m + n)(l2 + m2 + n2 - mn - nl - lm)
and (l + y + z)2 - (l2 + m2 + n2) = 2(mn + nl + lm)}.]
12. Evaluate:
(i) \(\frac{361^{3} + 139^{3}}{361^{2} – 361 × 139 + 139^{2}}\)
(ii) \(\frac{272^{3} - 122^{3}}{136^{2} + 136 × 61 + 61^{2}}\)
13. Find the LCM and HCF.
(i) p\(^{3}\) + 8 and p\(^{2}\) + 4
(ii) 1 – 8x\(^{3}\), 1 – 4x\(^{2}\) and 1 – x – 2x\(^{2}\)
Answers for the Worksheet on Factorization are given below.
Answers:
1. (i) (2x + 3y)(4x\(^{2}\) – 6xy + 9y\(^{2}\))
(ii) (6a + 1)(36a\(^{2}\) – 6a + 1)
(iii) (a\(^{2}\) + 1)(a\(^{4}\) – a\(^{2}\) + 1)
(iv) (x + \(\frac{1}{x}\))(x\(^{2}\) – 1 + \(\frac{1}{x^{2}}\)
(v) (a + 2b)\(^{2}\)(a\(^{2}\) – 2ab\(^{2}\) + 4b\(^{4}\))
2. (i) (1 + 9m)(1 + 9m + 81m\(^{2}\))
(ii) (5x – 3y)(25x\(^{2}\) + 15xy + 9y\(^{2}\))
(iii) (a - \(\frac{2}{b}\))(a\(^{2}\) + \(\frac{2a}{b}\) + \(\frac{4}{b^{2}}\)
(iv) (x\(^{2}\) – y)(x\(^{4}\) + x\(^{2}\)y + y\(^{2}\))
3. (i) (x + 1)(x – 1)(x\(^{2}\) + x + 1)(x\(^{2}\) – x + 1)
(ii) (a + 3b)(a – 3b)(a\(^{2}\) + 3ab + 9b\(^{2}\))(a\(^{2}\) – 3ab + 9b\(^{2}\))
4. (a\(^{2}\) + b\(^{2}\))(a\(^{4}\) – a\(^{2}\)b\(^{2}\) + b\(^{4}\))
5. (i) (x + 4)(x\(^{2}\) – x + 7)
(ii) (a – 1)(a\(^{2}\) + 4a + 7)
(iii) (x - \(\frac{1}{x}\) – 1)(x\(^{2}\) + x - \(\frac{1}{x}\) + \(\frac{1}{x^{2}}\) – 1)
(iv) (a + b)(a\(^{2}\) + 5ab + 7b\(^{2}\))
6. (i) (2 + x + y)(4 + x\(^{2}\) + y\(^{2}\) – 2x – 2y – xy)
(ii) (a + 2b + 3c)(a\(^{2}\) + 4b\(^{2}\) + 9c\(^{2}\) – 2ab – 3ca – 6bc)
7. (i) 3(1 – x)(y – 1)(x – y)
(ii) 3(2a – b – c)(2b – c – a)(2c – a – b)
8. (i) (x + 1)(x\(^{2}\) – x + 1)(x\(^{6}\) – x\(^{3}\) + 1)
(ii) (a + b)(a – b)(a\(^{2}\) + b\(^{2}\))(a\(^{2}\) – ab + b\(^{2}\))(a\(^{2}\) + ab + b\(^{2}\))(a\(^{4}\) –a\(^{2}\)b\(^{2}\) + b\(^{4}\))
(iii) (3a – b)(3a\(^{2}\) – 10ab + 7b\(^{2}\))
(iv) (a – b)(a\(^{2}\) + ab + b\(^{2}\))(a\(^{6}\) + a\(^{3}\)b\(^{3}\) + b\(^{6}\))
9. (i) (x – 1)(x\(^{2}\) + 2x + 2)
(ii) (a - \(\frac{1}{a}\))(a\(^{2}\) + a + 1 + \(\frac{1}{a}\) + \(\frac{1}{a^{2}}\))
10. (i) 2
(ii) 6√3
(iii) 0
11. (i) 36
(ii) 27
12. (i) 500
(ii) 600
13. (i) LCM = (p + 2)(p – 2)(p\(^{2}\) – 2p + 4); HCF = p + 2
(ii) LCM = (1 + x)(1 – 2x)(1 + 2x)(1 + 2x + 4x\(^{2}\)); HCF = 1 – 2x
From Worksheet on Factorization to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 15, 25 12:08 AM
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.